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Canada, H3G 1M8

E-mail: vbalev@power.ufscar.br, takis@boltzmann.concordia.ca and
studart@power.ufscar.br

Received 21 December 1998, in final form 14 April 1999

Abstract. A quasi-microscopictreatment of edge magnetoplasmons (EMPs) is presented for
very low temperatures and confining potentials smooth on the scale of the magnetic length`0
but sufficiently steep at the edges that Landau-level (LL) flattening can be discarded. The profile
of the unperturbed electron density is sharp and the dissipation taken into account arises only
from electron intra-edge and intra-LL transitions due to scattering by acoustic phonons. For wide
channels and filling factorsν = 1 and 2, there exist independent EMP modes spatially symmetric
and antisymmetric with respect to the edge. Some of these modes, named edge helicons, can
propagate nearly undamped even when the dissipation is strong. Their density profile changes
qualitatively during propagation and is given by a rotation of a complex vector function. For
ν > 2, the Coulomb coupling between the LLs leads to a repulsion of the uncoupled fundamental
LL modes: the new modes have very different group velocities and are nearly undamped. The
theory accounts well for the experimentally observed plateau structure of the delay times as well
as for the spectral properties (phase and group velocities) of the EMPs and decay rates.

1. Introduction

Previous theoretical studies of edge magnetoplasmons (EMPs), the low-frequency collective
excitations which propagate along the edges of a two-dimensional electron gas (2DEG) subject
to a normal magnetic fieldB, have indicated some important characteristics of EMPs, e.g., the
gapless excitation spectrum, chirality [1] and the acoustic nature of the EMP [2]. However,
the authors of references [1] and [2] have assumed density profiles which are infinitely sharp
or smooth respectively and independent of the filling factorν = n0h/|e|B, wheren0 is the
electron density in the bulk of the 2DEG. As a consequence, these profiles lack an essential
quantum mechanical feature, the Landau-level (LL) structure. As was clearly shown in
reference [3], and is reproduced in figure 1, the density profile for the cases of one and two
occupied LLs, calculated by assuming a smooth parabolic confining potential at the edge, is
quite different from those considered in the models of Volkov and Mikhailov [1] and Aleiner
and Glazman [2]. Furthermore, the inadequacies of these models were clearly manifested
in recent time-resolved magnetotransport experiments [4] that showed a plateau structure of
the delay times reflecting the quantum Hall effect (QHE) plateaus and not accounted for in
reference [2]. The experimental results also provided evidence of the essential role of the
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Figure 1. The unperturbed electron densityn0(y), normalized to the bulk valuen0, as a function
of Y . For the thick solid curves and the dotted curves,Y = (y − yre)/`0, whereyre is the edge
in the models of references [1] and [2]. The thick solid line is the density profile in the model of
reference [1] and the dotted curve that of reference [2] forn0(y)/n0 = (2/π) arctan[(yre−y)/a]1/2,
and a/`0 = 20. The dashed and solid curves show our calculated profiles forν = 1, 2 and
ν = 4, respectively. For the dashed and solid curves,Y = (y − yr0)/`0; for the solid curve,
(yr0 − yr1)/`0 = 10. The star and open dots denoten0(y)/n0 at the edges of LLs:n = 1, yr1 or
Y = −10; andn = 0, yr0 or Y = 0.

magnetic field dependence of the electronic structure at the edges. In addition, for a spatially
homogeneous dissipation within the channel, the EMP damping was found to be quantized
and independent of temperature [1] or it was treated phenomenologically [2]. The calculated
damping rates [2] were strongly overestimated as compared with the experimental results [4].
These deviations are attributed to the inadequacy of the classical edge-wave mechanism, which
in effect is employed by the theories of references [1] and [2], as regards describing the real
edge-wave mechanism for the QHE regime found in the semiconductor heterostructures [4].
Notice that the classical edge-wave mechanism of the conventional EMPs [1,2] is the magnetic
analogue of the Kelvin wave [5] at the edge of a rotating ‘shallow’ sea, with chirality determined
by the Coriolis parameter [3]. For the classical edge-wave mechanism, the position of the edge
does not vary but the charge-density profile at the edge does. Other drawbacks and the limited
validity of the treatment of the Volkov–Mikhailov model in the QHE regime were pointed out
in references [6–8].

Another distinct fully quantum mechanical edge-wave mechanism has been proposed
[9–11]. However, forν = 1, only the edge position of an incompressible 2DEG varies, and the
approach is limited to the subspace of wave functions of the lowest LL, neglects level mixing
and dissipation and also leads to a single chiral EMP with dispersion similar to that in the
Volkov–Mikhailov model.

In this paper, we provide a further step in the theory of EMPs by effectively incorporating
the previous two distinct edge-wave mechanisms [3]. In particular, we take into account
the LL structure for integerν, LL mixing and dissipation; it appears that damping of EMPs is
fundamentally related to LL mixing. In doing so, we have assumed that the QHE regime holds,
the confining potential is sufficiently steep at the edges that the dissipation is significant [12,13]
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only within a distance from the edge of the order of the magnetic length`0 = √[h̄/|e|B] and
that LL flattening [14] can be neglected [15, 16]. We show that, forν > 2, the Coulomb
interaction between the charge excitations at the edges of different occupied LLs leads to
a repulsion of the uncoupled fundamental LL modes. The new modes, which are nearly
undamped, have very different group velocities.

For the 2D system with a vertical conductivity drop at the boundaries, it has been shown [1]
that the dissipation significantly affects the dispersion relation and the spatial structure of the
EMP even in the regime of the QHE. The properties of the EMP have been expressed in terms of
the components of the magnetoconductivity tensor of an infinite 2D system. Moreover, due to
the very low frequencyω of the EMP, the dispersion relation can be written in terms of the static
magnetoconductivity tensor. However, previous studies [12,13] by two of the present authors
have shown that, for a sufficiently smooth lateral confinement and in the QHE regime, the
dissipation appears dominantly due to intra-level–intra-edge transitions of electrons scattered
by acoustic phonons and occurs mainly near the edges. For instance, in GaAs-based samples,
piezoelectrical phonons are typically involved. In the linear response regime, this is the main
cause of dissipation in channels of widthW . 100µm and for temperaturesT . 1 K if
the group velocity of the edge statesvg is larger than the speed of sounds. Indeed, in the
bulk region of channels, the dissipation is exponentially suppressed as the temperature goes
to zero. Under these conditions and in view of the fact that the dissipation is homogeneous
over the channel width in the Volkov–Mikhailov model [1], the previous results of Balev and
Vasilopoulos [3, 17] are understood as a demonstration that the EMP properties reported in
reference [1] can be strongly modified by dissipative processes localized near the channel edges.
Here we assume very low temperatures such that the conditionkBT � h̄vg/`0 is fulfilled. A
brief account of some results of the present investigation has appeared in reference [3]. Here
we elaborate on our EMP theory and provide new additional material which can make results
more accessible to a broader audience. The notation that is used here coincides with that in
reference [3] with two exceptions: (i) here we denotee2/πh̄ as σ̃ 0

yx , reserving the notation
σ 0
yx for the Hall conductivity in the bulk region (i.e., forν = 2, σ̃ 0

yx andσ 0
yx coincide, while

for ν = 4, they are different); (ii) for the inter-LL length we use the term1y01 = yr0 − yr1,
instead of1y.

The organization of the paper is as follows. In section 2, starting with the expressions for
the inhomogeneous current densities and conductivities, we derive the integral equation for the
EMP and present the general method for solving it. In section 3 we calculate the dispersion
relations and the spatial structure of the new edge waves at very low temperatures. Finally, in
section 4 we compare our theory with experiment and present our concluding remarks.

2. Basic relations

2.1. Inhomogeneous current density in the quasi-static regime

We consider a 2DEG confined to a strip in thex–y plane with a widthW along they-axis and
lengthL along a channel in thex-direction, under a strong magnetic fieldB parallel to the
z-axis. For simplicity, we consider the confining potential as parabolic at the edges, such that
Vy = 0 for yl < y < yr , Vy = m∗�2(y − yr)2/2 for y > yr > 0 andVy = m∗�2(y − yl)2/2
for y < yl < 0, whereyr (l) delimits the right-hand (left-hand) edge of the flat part ofVy . We
also assume that the condition|kx |W � 1 is satisfied, so it is possible to consider an EMP
along the right-hand edge of the channel of the formA(ω, kx, y)exp[−i(ωt − kxx)] totally
independent of the left-hand edge. We restrict consideration to the linear response regime. For
definiteness, we take the background dielectric constantε to be spatially homogeneous. In the
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QHE regime and withν even, we neglect the Zeeman spin splitting. As for the case where
ν = 1, we assume that the spin splitting, caused by many-body effects, is strong enough that
we can discard the contribution related to the upper spin-split LL. We also assume a smooth
lateral confinement on the scale of the magnetic length`0 = (h̄/m∗ωc)1/2 such that�� ωc,
whereωc = |e|B/m∗ is the cyclotron frequency.

Due to the low-frequency limit for the EMP (ω � ωc), the current density can be evaluated
within a quasi-static approximation by using the fact that the EMP’s wavelengthλ is much
larger thaǹ 0. Following references [3] and [17], we write the components of the current
density in the form

jy(y) = σyy(y)Ey(y) + σ 0
yx(y)Ex(y) (1)

jx(y) = σxx(y)Ex(y)− σ 0
yx(y)Ey(y) +

∑
j

vgjρj (ω, kx, y) (2)

whereσµγ (y) andEγ (y) are the components of the conductivity tensor and the electric field
respectively. Here we have suppressed the exponential factor exp[−i(ωt − kxx)] common to
all terms in equations (1) and (2). It is understood thatEγ (y) depends onω andkx . The term
vgjρj (ω, kx, y) represents an advection contribution caused by a charge distortionρj (ω, kx, y)

localized near the edgeyrj of thej th LL. In equations (1) and (2) the contributions tojµ(y),
which are proportional toEγ (y), are obtained microscopically when the electric field is smooth
on the scale of̀ 0. Even though this is not well justified for both components proportional
to Ex(y) andEy(y), we approximate these contributions by those obtained whenEx(y) and
Ey(y) are smooth on the scale of`0. This approximation is equivalent to neglecting nonlocal
contributions tojµ that are∝ ∫ dy ′ σµγ (y, y ′)Eγ (y ′). For weak dissipation, this can be justified
within a treatment based on the random-phase approximation (RPA) [18] that includes nonlocal
effects and edge-state screening, e.g., for the fundamental EMPs atν = 2, 4, 6. The Hall
conductivity is [13]

σ 0
yx(y) =

e2

2πh̄

∑
n=0

∫ ∞
−∞

dy0α fα9
2
n(y − y0α) (3)

whereα ≡ {n, kxα}, y0α = `2
0kxα,9n(y) is the harmonic oscillator function and

fα ≡ fn(kxα) = 1/[1 + exp(εα − εF )/kBT ]

is the Fermi–Dirac function.εF is the Fermi level measured from the bottom of the lowest
electric subband; for evenν, the right-hand side of equation (3) should be multiplied by 2, the
spin degeneracy factor. We point out that, forν = 1 andT = 0 and near the right-hand edge,
we obtain

σ 0
yx(y) = (e2/4πh̄)[1 +8(yre − y)]

where8(x) is the probability integral,yre = `2
0kre andf0(kre) = 1/2. Notice thatσ 0

yx(y),
near the edge, decreases on the scale of`0 and behaves like the density profile depicted by
the dashed curve of figure 1. Considering only the right-hand edge and the flat part of the
confining potential foryl 6 y0α 6 yr , we obtain the energy levelsεα = h̄ωc(n + 1/2) and, for
y0α > yr , the energy spectrum can be written as

εα ≡ εn(kxα) = h̄ωc(n + 1/2) +m∗�2(y0α − yr)2/2. (4)

This result implies thatεn̄(kxα), as a function ofy0α, is smooth on the scale of [
√
(2n̄ + 1)]`0,

wheren̄ is the principal quantum number of the highest occupied LL. The energy spectrum
(4) of thenth LL allows us to evaluate the group velocity of the edge states as

vgn = ∂εn(kr + k(n)e )/h̄ ∂kx = h̄�2k(n)e /m
∗ω2

c
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with the characteristic wave vector

k(n)e = (ωc/h̄�)
√

2m∗1Fn where1Fn = εF − (n + 1/2)h̄ωc.

The edge of thenth LL is denoted byyrn = yr + `2
0k
(n)
e = `2

0krn, wherekrn = kr + k(n)e ,
kr = yr/`2

0 andW = 2yr0. We can also writevgn = Een/B, whereEen = �
√

2m∗1Fn/|e| is
the electric field associated with the confining potentialVy atyrn.

We consider only the electron–phonon interaction and neglect that of electrons with
impurities, since the former is the most essential for the assumed conditions [12]. Following
references [17] and [3], we approximateσxx(y) by

σyy(y) =
n̄∑
n=0

σ (n)yy (y).

Furthermore, at very lowT , whereh̄vgn � `0kBT with vgn > s satisfied, equation (16) of
reference [13] givesσ (n)yy (y) = σ̃ (n)yy 9

2
n(ȳn), whereȳn = y − yrn. For piezoelectrical phonons

andν = 2, 4, we have

σ̃ (n)yy = 3e2`4
0c
′k3
BT

3/π2h̄6v4
gns

wherec′ is the electron–phonon coupling constant. For piezoelectrical phonons in a GaAs-
based heterostructure,c′ = h̄(eh14)

2/(2ρV s), whereh14 = 1.2 × 109 V m−1, ρV =
5.31× 103 kg m−3, s = 2.5 × 103 m s−1. Note thatσyy(y) is exponentially localized
within a distance.`0 from the LL edgeyrn. Notice also that forvgn/s � 1 such that
s/
√

2vgn < kBT `0/h̄vgn � 1, we have

σ̃ (n)yy =
√

2e2`3
0c
′k2
BT

2/π5/2h̄5v4
gn.

Furthermore, for all cases it is assumed that the strong-magnetic-field condition, namely
σyy(y)/|σ 0

yx(y)| � 1, is fulfilled.

2.2. The integral equation for EMPs with dissipation at the edges

Using equations (1)–(3), the Poisson equation and the linearized continuity equation, we obtain
the following integral equation forρ(ω, kx, y):

−i
∑
n

(ω − kxvgn)ρn(ω, kx, y) +
2

ε

[
k2
xσxx(y)

− ikx
d

dy
[σ 0
yx(y)] − σyy(y)

d2

dy2
− d

dy
[σyy(y)]

d

dy

]
×
∫ ∞
−∞

dy ′ K0(|kx ||y − y ′|)ρ(ω, kx, y ′) = 0 (5)

whereK0(x) is the modified Bessel function. For the dissipationless classical 2DEG, equ-
ation (5) becomes identical with equation (4) of reference [2]. Furthermore, if the conductivity
components are independent ofy, for |y| < W/2 equation (5) assumes the form of equation (15)
of reference [1]. In order to solve equation (5), we note that, for ¯hvgn � `0kBT , we have

d[σ 0
yx(y)]/dy ∝

n̄∑
n=0

92
n(ȳn)

whose spatial behaviour is similar to that ofσyy(y). Then equation (5) shows thatρn(ω, kx, y)
will be concentrated within a region of extent of the order of`0 around the edge of thenth
LL. Furthermore, the integral can be evaluated under the assumption thatkx`0� 1 and using



5148 O G Balev et al

the approximationK0(|x|) ≈ ln(2/|x|) − γ , whereγ is the Euler constant. Assuming that
1ym−1,m = yrm−1−yrm � `0 (see figure 1 forν = 4), we can neglect the exponentially small
overlap betweenρm−1(ω, kx, y) andρm(ω, kx, y) for m 6 n̄. It is then natural to attempt to
find an exact solution of the form

ρ(ω, kx, y) =
n̄∑
n=0

ρn(ω, kx, y) =
n̄∑
n=0

92
n(ȳn)

∞∑
l=0

ρ(l)n (ω, kx)Hl(ȳn/`0) (6)

where we have used the Hermite polynomialsHl(x) as the expansion basis. We call the terms
with l = 0, l = 1, l = 2 (and so on), the monopole, dipole, quadrupole terms in the expansion
of ρn(ω, kx, y) relative toy = yrn.

2.3. EMPs forν = 2 andν = 4

Below we first present the general formulae for the case whereν = 4 (n̄ = 1). Using them, we
show how the general formulae forν = 2 (n̄ = 0) follow. Forν = 4 we multiply equation (5) by
Hm(ȳ0/`0) and integrate overy, from yr0 −1y01/2 toyr0 +1y01/2. Analogous integration,
from yr1 − 1y01/2 to yr1 + 1y01/2, is repeated withHm1(ȳ1/`0). With the abbreviations
ρ
(m)
0 (ω, kx) ≡ ρ(m)0 , amk(kx) ≡ amk etc, we obtain the following coupled systems of equations:

(ω − kxvg0)ρ
(m)
0 − (S0 +mS ′0)

∞∑
n=0

cmnamnρ
(n)
0 − (S0 +mS ′0)

∞∑
l=0

cmlbmlρ
(l)
1 = 0 (7)

(ω − kxvg1)
[
Am1ρ

(m1)
1 +Bm1ρ

(m1+2)
1 + ρ(m1−2)

1 /2
]

− (S1 +m1S
′
1)

[ ∞∑
n=0

cm1n bnm1ρ
(n)
0 +

∞∑
j=0

cm1j dm1j ρ
(j)

1

]

+ 2
√
m1S

′
1

[ ∞∑
n=0

cm1n b̃n,m1ρ
(n)
0 +

∞∑
j=0

cm1j d̃m1,j ρ
(j)

1

]
= 0 (8)

where

amn = anm =
∫ ∞
−∞

dx 9m(x)90(x)

∫ ∞
−∞

dx ′ K0(|kx ||x − x ′|)9n(x ′)90(x
′) (9)

and

bmn =
∫ ∞
−∞

dx 9m(x)90(x)

∫ ∞
−∞

dx ′ 2(x ′/`0)
2K0(|kx ||x − x ′ +1y01|)9n(x ′)90(x

′). (10)

The other coefficients are given as

b̃mn =
∫ ∞
−∞

dx 9m(x)90(x)

∫ ∞
−∞

dx ′ K0(|kx ||x − x ′ +1y01|)9n−1(x
′)91(x

′) (11)

dmn = (2/`2
0)

∫ ∞
−∞

dx 9m(x)x91(x)

∫ ∞
−∞

dx ′ K0(|kx ||x − x ′|)9n(x ′)x ′91(x
′) (12)

and

d̃mn = (
√

2/`0)

∫ ∞
−∞

dx 9m−1(x)91(x)

∫ ∞
−∞

dx ′ K0(|kx ||x − x ′|) 9n(x ′)x ′91(x
′). (13)

In addition,

cmn =
√

2nn!/2mm!

Am1 = (2m1 + 1) Bm1 = (m1 + 2)(2m1 + 2)

Sj = 2(kxσ̃
0
yx − ik2

x σ̃
(j)
xx )/ε S ′j = −4iσ̃ (j)yy /ε`

2
0
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andσ̃ 0
yx = e2/πh̄. Notice that here in the interior part of the channelσ 0

yx(y) = σ 0
yx = 2σ̃ 0

yx =
2e2/πh̄.

Furthermore, forν = 2 (n̄ = 0), the third term in equations (7) and (8) is absent and we
obtain explicitly

(ω − kxvg0)ρ
(m)
0 − (S0 +mS ′0)

∞∑
n=0

cmnamnρ
(n)
0 = 0. (14)

In this case we obtain thatσ 0
yx(y) = σ 0

yx = σ̃ 0
yx = e2/πh̄ for the inner part of the channel.

3. Edge waves

3.1. Edge modes forν = 2 (1)

In what follows we assume thatν = 2, but the results obtained can easily be extended to
the case whereν = 1, when only the lowest spin-split LL is occupied. Equations (6) and
(14) show that there exist independent modes which are spatiallysymmetric, ρs(ω, kx, y), or
antisymmetric, ρa(ω, kx, y), with respect toy = yr0 (see reference [17]). They correspond in
equation (6) tol even and odd respectively. Notice that in this casen̄ = 0, and all edge modes
belong to then = 0 LL. However, within our quasi-microscopic approach, the mixing of the
n = 0 LL with some higher empty LLs is included.

We first consider the lowest antisymmetric mode forweak dissipation[17] η =
σ̃ (0)yy /(`

2
0σ

0
yx |kx |) � 1/4. On neglecting its coupling with higher antisymmetric modes, it

becomes purely dipolar and corresponds tol = 1 andn = 0 in equation (6). To take
into account the effect of inter-mode coupling on this pure dipole mode, we will neglect
the damping. Then, as shown in reference [17], the pure dipole mode has a dimensionless
velocity vdip = (ω/kx − vg0)/(2σ 0

yx/ε) which givesvdip = a11 ≈ 0.4996. Furthermore, if
the interaction of this mode with the octupole mode (l = 1) is considered (i.e. only thel = 1
andl = 3 terms in equation (6) are retained), the velocity of the renormalized dipole mode
becomes

vdip = (a11 + a33 +
√
(a11− a33)2 + 4a2

13)/2≈ 0.5963.

So, due to the interaction with thel = 3 mode,vdip becomes≈20% higher. To consider
further the interaction of the dipole mode with thel = 3 andl = 5 modes, we retain the terms
l = 1, 3 andl = 5 in equation (6). From equation (14), form = 1, 3 andm = 5, we obtain
a system of three linear equations forρ(1)0 , ρ(3)0 andρ(5)0 that leads tovdip ≈ 0.6287, which is
only almost 5% higher than that when only the terms withl = 1, 3 were retained. Apparently
vdip, and consequently the dispersion relation of the dipole mode, exhibits fast convergence
when higher-orderl-terms are taken into account in the series expansion. Notice that, within
the present approach, the dipole mode has a purely acoustic dispersion. The charge-density
profile δρ(y) of the dipole mode is depicted in figure 2, where we plot

δρ(y) ≡ ρ̃(vdip, y) =
√
π`0ρ(ωdip(kx), kx, y)/ρ

(1)(ωdip(kx), kx)

as a function of̄y0/`0. The dashed, short-dashed and solid curves are obtained, respectively,
with one (l = 1), two (l = 1, 3) or three (l = 1, 3, 5) terms retained in expansion (6). The
profile already exhibits a clear convergence forl 6 5.

Forvery strong dissipationη � K, whereK = ln(1/|kx`0|)+1/2, all of the branches are
strongly damped except the one EMP mode, so we discuss here the latter EMP branch which
is weakly damped and was termed thelow-frequency edge helicon(LFEH) in references [17]
and [3]. This mode is spatially symmetric and its real part

Reω(kx) ≡ ReωLFEH ≈ kxvg0 + (2σ 0
yxkx/ε)(K − 1/4)
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Figure 2. Dimensionless charge-density profilesρ̃(y) ≡ ρdip for the dipole mode as functions of
ȳ0/`0; ν = 1, 2 andn = 0. The dashed, short-dashed and solid curves correspond to one(l = 1),
two (l = 1, 2) and three(l = 1, 2, 3) terms, respectively, retained in the expansion (equation 6).

is very close to Reω(kx) for the fundamental EMP of then = 0 LL, namely,

Reω(0)EH ≈ kxvg0 + (2σ 0
yxkx/ε)(K + 1/4).

It is convenient now to point out the results of references [3] and [17] concerning the properties
of the fundamental EMP of then = 0 LL. Its dispersion is given by

ω
(0)
EH = kxvg0 + S0 (K + 1/4) + S ′0/4K

for both weak dissipation(η � 1/4) andstrong dissipation(K � η � 1/4). In the
latter case, the fundamental EMP was termed thehigh-frequency edge helicon(HFEH). In
both regimes of dissipation, this EMP has mainly monopole character: in the first case, its
density profile satisfies the condition|ρ(2)0 /ρ

(0)
0 | ≈ (1/8K) � 1; and in the second case,

|ρ(2)0 /ρ
(0)
0 | ≈ (η/2K) � 1. In either regime, considering only two terms in equation (6),

those withl = 0 andl = 2, is well justified. This is not the case for the LFEH as shown in
reference [3].

To support the statements made above, we present in figures 3 and 4 the evolution of the
real and imaginary parts of the dimensionless charge density for the LFEH given by

δρr =
√
π`0 Re[ρ(ω, kx, y)/ρ

(0)
0 (ω, kx)]

and

δρi =
√
π`0 Im[ρ(ω, kx, y)/ρ

(0)
0 (ω, kx)]

respectively, as one increases the number of terms considered in the expansion forK/η = 0.01.
Notice that, whileδρr represents the charge profile for a particular phase of the wave,δρi
represents it for the phase shifted by±π/2. Sinceδρ(y) is symmetric with respect to the edge,
only half of the profile is shown in figures 3 and 4. In figure 3, curve 1 representsδρr when
only thel = 0 term is retained in the expansion and curve 2 shows

δρr ≈
√
π`0[92

0(ȳ0) +
√

292(ȳ0)90(ȳ0)]
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Figure 3. The dimensionless charge-density profile
ρr ≡ Reδρ of the low-frequency edge helicon (LFEH) as
a function ofȳ0/`0 forK/η = 0.01; ν = 1, 2 andn = 0.
The numbers ofeventerms retained in equation (6) are
shown next to the curves.

Figure 4. The dimensionless charge-density profileρi ≡
Im δρ of the low-frequency edge helicon (LFEH) as a
function of ȳ0/`0 for K/η = 0.01; ν = 1, 2 andn = 0.
The numbers ofeventerms retained in equation (6) are
shown next to the curves.

when two terms(l = 0, 2) are retained. Because these curves are fundamentally different,
more l-terms should be considered in equation (6). Thus, to describe better the profileδρr ,
we also plot curves 3, 4 and 5 obtained, respectively, when three, four and five even-l terms
are retained in equation (6), corresponding to the solution of systems of three, four and five
equations following from equation (14). For instance, curve 5 was obtained by retaining the
terms withl = 0, 2, 4, 6 and 8 along with equations form = 0, 2, 4, 6 and 8. As is seen in
figure 3, retaining four or five terms in thel-summation already leads to a rapid convergence in
δρr without much change in either the oscillatory character or the magnitude. In figure 4, similar
results are depicted for the profileδρi when two, three, four and five even-l terms are retained
in equation (6). Notice that the contribution due to the monopole term, withl = 0, is absent
because the total edge charge

∫
dy δρi = 0. Thereforeδρi must show a substantially stronger

oscillatory behaviour thanδρr and correspondingly a slower convergence, in agreement with
figures 3 and 4. However, curves 4 and 5 in figure 4 have approximately the same magnitude
in the region where|ȳ0|/`0 6 1.5. Moreover, for|ȳ0|/`0 > 1.5 these curves exhibit the same
spatial behaviour and magnitude. This means that the expansion forδρi already essentially
demonstrates convergence with four and five terms taken into account; however, in these cases,
due to the absence of a contribution from the lowest (l = 0) term in this expansion, only three
and fourl-terms in effect contribute to the spatial structure—namely those withl = 2, 4, 6
and those withl = 2, 4, 6, 8, respectively.

In figures 5 and 6, we plot the same profiles as in figures 3 and 4, respectively, for
K/η = 0.1. Curves 1 and 2 in figure 5 showδρr with, respectively, only one (l = 0) or two
(l = 0, 2) terms retained in equation (6). As can be seen, retaining three, four or five terms in
the l-summation already leads to a clear convergence of the form ofδρr . Figure 6 shows the
profileδρi and the curves are labelled as in figure 4. Because the contribution of the monopole
term is absent,δρi has an essentially oscillatory behaviour that is rather similar for curves 4
and 5, as the spatial positions of the extrema for the two curves almost coincide. This means
that despite substantially slower convergence of the expansion forδρi , due to the absence of
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Figure 5. As figure 3, but forK/η = 0.1. Figure 6. As figure 4, but forK/η = 0.1.

the lowest(l = 0) term (which in turn leads to strongly oscillatory behaviour ofδρi alongy, in
contrast to that ofδρr ), curves 4 and 5 in figure 6 already essentially demonstrate convergence.
However, in contrast to the case forδρr , for these two curves, due to the trivial contribution
from thel = 0 term toδρi , in effect only three (l = 2, 4, 6) and four (l = 2, 4, 6, 8) l-terms
contribute.

The dispersion relation of the LFEH obtained for the cases represented by curves 2 in
figures 3–6 is given by [3,17]

ωLFEH = kxvg0 + {(2σ 0
yxkx/ε)− [i σ̃ (0)yy /η

2`2
0ε]}(K − 1/4). (15)

When morel-terms are taken into account, only the imaginary part ImωLFEH changes signif-
icantly. For instance, with two, three, four or five terms retained andK/η = 0.01, the
dispersion relations, corresponding to figures 3 and 4, are given, respectively, by

�LFEH = ωLFEH/S0 ≈ [(K − 0.25)− 0.005i] �LFEH ≈ [(K − 0.50)− 0.062i]

�LFEH ≈ [(K − 0.63)− 0.117i] �LFEH ≈ [(K − 0.57)− 0.133i].

It is clearly seen that on taking into account four and five even terms, ImωLFEH shows rapid
convergence to its exact value. Despite thevery strong dissipation, the LFEH isvery weakly
dampedsince Re|ωLFEH | � Im|ωLFEH |. Furthermore, in contrast with the case for reference [1],
ReωLFEH is independent ofT and the damping rate ImωLFEH is not quantized but varies asT −3

orT −2; the latter holds ifs/
√

2vg0 < kBT `0/h̄vg0� 1. We point out that if, e.g., fivel-terms
are taken into account, then all of them contribute toωLFEH andδρr ; however, only fourl-terms
will effectively contribute toδρi .

Due to specific properties of the LFEH, such as the essential charge oscillations transverse
to the edge, we may distinguish the LFEH from the fundamental EMP of then = 0 LL. For
strong dissipationthe latter mode is also called the HFEH of then = 0 LL. It is worth noticing
that for the fundamental mode we have 2(Kkx`0)

2� 1 due to the long-wavelength condition
kx`0� 1. ThereforeSj can be approximated well by its real part for the fundamental mode.
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3.2. The repulsion of fundamental EMPs forν = 4

Although here the condition1y01/`0 � 1 is well justified, as can be seen in figure 1, and
simplifies the treatment, the system of equations (7) and (8) can be strongly coupled by the
long-range Coulomb interaction between the edges of the LLs. However, if this inter-edge
Coulomb coupling is neglected in equations (7) and (8), on setting the coefficientsbmn and
b̃mn equal to zero, equation (7) leads to equation (14) for theν = 2 case and all edge modes
of then = 1 LL are decoupled from those of then = 0 LL.

Now, by taking the decoupling limit, we first consider the symmetric edge modes of the
n = 1 LL and the cases ofstrongandweak dissipation. In the former case, the fundamental
mode of then = 1 LL can be called the HFEH of then = 1 LL. To treat the fundamental mode
of then = 1 LL properly it is sufficient to consider just the first two even terms in the sum
over l in equation (6), namelyρ(0)1 andρ(2)1 : here we must retain only the terms withn = 1.
Then, from equation (8) form1 = 0 andm1 = 2, we obtain a system of two linear equations
for ρ(0)1 , ρ(2)1 . The corresponding dispersion relation of the HFEH of then = 1 LL becomes

ω
(1)
EH ≈ kxvg1 + S1(K − 1/4) + S ′1/12K.

The other branch has the dispersion

ω
(1)
3 ≈ kxvg1 + (S1 + 2S ′1)/4.

In analogy with the fundamental EMP of then = 0 LL, the n = 1 LL fundamental EMP,
decoupled from the excitations of then = 0 LL, is very weakly damped even forstrong
dissipation. Now if we omit the term inρ(2)1 in equation (6), i.e., on neglecting the interaction
between the monopole and quadrupole excitations of then = 1 LL, the decoupled fundamental
mode of then = 1 LL has a dispersion relation given byω(1)EH without the damping term. This
holds for then = 0 LL as well, i.e., for its purely monopole excitationρ(0)0 , the dispersion is
given byω(0)EH without the damping term.

If we take into account the Coulomb coupling between the pure monopole modesρ
(0)
0 and

ρ
(0)
1 , their dispersions change drastically. For|kx |1y01� 1, the dispersion of the renormalized

fundamental mode of then = 0 LL becomes

ω(01)
+ ≈ kx(vg0 + vg1)/2 + (2/ε)kxσ̃

0
yx [2 ln(1/kx`0)− ln(1y01/`0) + 3/5]

and that of then = 1 LL becomes

ω
(01)
− ≈ kx(vg0 + vg1)/2 + (2/ε)kxσ̃

0
yx [ln(1y01/`0) + 2/5].

The dispersion relationω(01)
+ (kx) is similar to that of the fundamentalj = 0 mode of ref-

erence [2] and to the EMP of reference [1], since each of them has a term∝ kx ln(1/kx).
Notice thatω(01)

+ (kx) is essentially different from the frequency of thedecoupledn = 0 LL
fundamental mode

ω ≈ kxvg0 + (2/ε)σ̃ 0
yxkx [ln(1/kx`0) + 3/4].

In contrast withω(01)
+ (kx), the dispersion of the renormalized fundamental EMP of then = 1

LL, ω(01)
− (kx), becomes purely acoustic. Its phase velocity is larger than that of thej = 1 mode

of reference [2] for1y01/`0 > 5. Here we observe that the term related to the edge velocities,
kx(vg0 +vg1)/2, is typically much smaller than the second term related to the electron–electron
interaction. The spatial dependence ofρ(ω, kx, y) for the renormalized fundamental mode of
then = 0 LL is approximately∝[92

0(ȳ0)+92
1(ȳ1)] and that for the renormalized fundamental

mode of then = 1 LL is approximately∝[92
0(ȳ0)−92

1(ȳ1)].
The above results for Reω(kx) for the coupled fundamental EMPs of then = 0 andn = 1

LLs remain practically unchanged if more termsρ(j)0 andρ(j)1 , for j > 1, are retained. Notice
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that, due to the presence of the inter-edge Coulomb interaction, the symmetry of the problem
with respect toyr0 or yr1 is absent and hence, in principle,ρ(j)0 andρ(j)1 , with j even and odd,
must be included. Furthermore, taking into account such additional terms leads to essential
contributions to the damping rates of the renormalized fundamental EMPs of then = 0 and
n = 1 LLs. From1y01/`0 � 1, kx 1y01� 1 and the properties of the coefficientsamn, bmn
etc we find that the most important terms in the summations of equation (6) areρ

(0)
0 , ρ(2)0 , ρ(0)1

andρ(2)1 . Calculations show that theoddterms here are negligibly small, so they are discarded.
Dropping the less important termρ(2)0 , this leads to a system of three coupled equations giving
three branches,̃ω(01)

± andω(01)
3 . The dispersion relation of the renormalized fundamental EMP

of then = 0 LL is given by

ω̃(01)
+ = kx(vg0 + vg1)/2 + (2/ε)kxσ̃

0
yx [2 ln(1/kx`0)− ln(1y01/`0) + 3/5] + S ′1/16K (16)

and that of then = 1 LL is

ω̃
(01)
− = kx(vg0 + vg1)/2 + (2/ε)kxσ̃

0
yx [ln(1y01/`0) + 2/5] + S ′1/{24[ln(1y01/`0) + γ + 1/4]}.

(17)

The coupled fundamental EMPsω(01)
± are very weakly damped. Notice that the neglect of the

ρ
(2)
0 -term in the calculation of the damping rates is justified for dissipation at the edge of the
n = 1 LL substantially greater than that at the edge of then = 0 LL. Indeed,S ′j ∝ v−4

gj and
the group velocityvg0 is typically substantially larger thanvg1. So, neglecting the inter-edge
Coulomb coupling, the damping rate of theω(1)EH -branch is three times larger than that of the
ω
(0)
EH -branch forvg0/vg1 =

√
3.

4. Discussion and concluding remarks

We have introduced a realistic model for the confining edge potentialVy and made it sufficiently
steep at the edge that LL flattening [14] can be discarded [15, 16]. Using this model, we
develop a quasi-microscopic approach for evaluating the structure and spectrum of the edge
magnetoplasma excitations.

We now compare our results, presented in section 3.1, with the experimental ones obtained
by Ashooriet al [8]. for ν = 1, T = 0.3 K andB = 5.1 T. Using the experimental value [19]
� = 7.8× 1011 s−1, we obtainvg0 = 8.8× 103 m s−1. This leads tõσ (0)yy ∝ T 3. By using a
typical excited wave vectorq ' π/2Lp, whereLp = 10µm is the side of the square pulser
(which generates charge pulses), we find that all calculated modes forν = 1 are quite strongly
damped except the fundamental modeω

(0)
EH which is very weakly damped. Its damping rate is

Imω
(0)
EH ≈ 2×107 s−1 and its period of travelTtr ≈ 3.4 ns, in agreement with the experimental

values.
The EMP dispersion, given by equations (16) and (17), forν = 4, was compared in

figure 3 of reference [3] with the experimental data of reference [4]. Using the same value of
� as before, one has�/ωc ≈ 0.14,1y01/`0 ≈ 6, vg0 = 2.3× 103 m s−1 andvg0/vg1 =

√
3.

The spectrum of theν = 4 modes, shown in figure 3(a) of reference [4], is very well described
by the dispersion of the renormalized fundamental modes given by equations (16) and (17).
The same holds for theν = 4 mode of figure 3(b) of reference [4]. The modeω(01)

3 is strongly
damped. Takingε = 6.75, its decay rate is

Im S ′1/2≈ 2σ̃ (1)yy /ε`
2
0 ≈ 1.3× 1010 s−1.

The latter is still smaller than that of thej = 1 branch of the Aleiner–Glazman model [2],
1/τ1 ≈ 2×1010 s−1, which becomes four times larger forB = 1 T, due to theB−2-behaviour.
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The decay rate of thej = 0 mode in this model [2] is 1/τ0 ≈ 1.7×109 s−1 whereas our result
for theω̃(01)

+ -mode, given by equation (16), is about ten times smaller:

Im ω̃(01)
+ ≈ 2.1× 108 s−1.

Moreover, the damping rate of thẽω(01)
− -mode, given by equation (17), is much less than that

of thej = 1 mode of the Aleiner–Glazman model [2], since we have

Im ω̃
(01)
− ≈ 5.6× 108 s−1� 1/τ1 ≈ 2× 1010 s−1.

Thus, the decay rates of theω̃(01)
± -modes should be much closer to those of the experiment [4]

than the previous strongly overestimated results of Aleiner and Glazman [2]. With regard
to the delay timestd , which are directly related to the mode group velocity, for the sample
with lengthLx = 320µm, we obtaintd = 0.12 ns for theω̃(01)

+ -mode andtd = 0.69 ns for
the ω̃(01)

− -mode, which is also in excellent agreement with the experimental data, as we can
see from figure 3(a) of reference [4]. We can conclude that our results for the renormalized
fundamental modes are in quite good agreement with the experimental ones as regards both
the spectrum properties (phase and group velocities) and the damping rates. We also stress
the conclusion, from the previous discussion, that the slower mode observed [4] forν = 4
cannot be identified with thej = 1 mode of the Aleiner–Glazman model but can be identified
with the present̃ω(01)

− -mode, i.e., the renormalized fundamental EMP of then = 1 LL. In
addition, it is also clear that our theory, in contrast with that of reference [2], accounts for the
existence of the plateaus [4] intd since the quantized Hall conductivity appears spontaneously
in all dispersion relations and, moreover, the assumption of the QHE regime is essential to our
study.

The properties of the edge waves in the three regimes ofweak (η � 1/4), strong
(1/4 � η � K) andvery strong(η � K) dissipation can be summarized as follows. For
ν = 2 (1):

(a) The fundamental EMP for then = 0 LL has mainly a monopole character with char-
acteristic dispersionω ∝ kx ln(1/kx`0) and a weak damping in the regimes of weak and
strong dissipation (the high-frequency edge helicon).

(b) For very strong dissipation, one obtains strongly damped branches and only one weakly
damped one (the low-frequency edge helicon). The real part of the dispersion relation of
this mode is independent ofT and its damping rate is not quantized but varies asT −3 or
T −2. It can be distinguished from the fundamental EMP due to its specific properties like
the strong charge oscillations transverse to the edge.

(c) As regards the behaviour of the charge-density amplitudes of the low-frequency edge
helicon, we remark that the convergence shown in the imaginary part of the density profile
δρi (figures 4 and 6) is substantially slower than that of the corresponding real partδρr
(figures 3 and 5), for the reasons pointed out in section 3.1. Here, we just mention that
this behaviour is related to the absence of the lowest term (monopole) in the expansion of
δρi , while it is present inδρr .

For ν = 4, the modes of then = 1 LL were studied in the regimes of weak and strong
dissipation. It was shown that the fundamental mode of then = 1 LL, decoupled from the
excitations of then = 0 LL, is very weakly damped even for strong dissipation. On the
other hand, when the inter-LL Coulomb coupling with then = 0 LL fundamental EMP is
turned on, the dispersion relations of the two fundamental modes change drastically, leading
to a renormalization of the fundamental modes of then = 0 LL and n = 1 LL. We must
emphasize that, as was shown in figure 3 of reference [3], the dispersion relations of these
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renormalized fundamental modes describe the spectrum of modes found experimentally quite
well (see figure 3(a) of reference [4]).

We have neglected the spin splitting for evenν. Though this is a reasonable approximation
for the bulk of the channel, its validity near the edges cannot be guaranteed, in view of the
work of references [20] and [21].
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